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1. Introduction

Abd El Monsef et al. introduced β-open sets in [1] and several studies have
been developed this area such as [2, 3, 4].

In [5] Brown and Šostak introduced the theory of graded ditopology as a more
comprehensive structure than ditopology presented in [6, 7] and fuzzy topology given
independently by Šostak in [8] and Kubiak in [9]. In the structure of graded ditopol-
ogy, openness and closedness are defined by independent grading functions instead
of elements of a texture as in ditopological case. The theory of graded ditopological
texture spaces continues to be developed by various recent studies such as [10, 11].

The purpose of this study is to generalize the concepts of β-openness and β-
compactness in ditopological texture spaces defined in [12] to the structure of graded
ditopological texture spaces and investigate the properties of these concepts in this
structure. For this generalization, the spectral approach as in [13, 14, 15] is used and
several relationships between the structures ditopological texture spaces and graded
ditopological texture spaces in the context of β-openness are examined.

Our basic motivation is to define β-openness and β-compactness in g.d.t.s. and
so develop the theory of graded ditopologies by investigating the properties of β-
openness and β-compactness in g.d.t.s.
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2. Preliminaries

Ditopological Texture Spaces ([6, 16, 17]) Let S be a set and S ⊆ P(S) with
S,∅ ∈ S. If S is a point separating, complete, completely distributive lattice with
respect to inclusion and for which meet

∧
coincides with intersection

⋂
and finite

joins
∨

coincide with unions
⋃

then the pair (S,S) is called a texture or a texture
space.

In general, a texturing of S may not be closed under set complementation. How-
ever, if there is a mapping σ : S → S satisfying σ(σ(A)) = A and A ⊆ B ⇒ σ(B) ⊆
σ(A) for all A,B ∈ S then σ is called a complementation on (S,S) and (S,S, σ) is
called a complemented texture .

The p − sets given by Ps =
⋂
{A ∈ S | s ∈ A} and the q − sets given by

Qs =
∨
{A ∈ S | s 6∈ A} =

∨
{Pu | u ∈ S, s 6∈ Pu} are essential to define several

concepts in a texture space (S,S).
Product of textures ([7, 16, 17]) Let (Sj ,Sj), j ∈ J be textures, S =

∏
j∈J Sj

and Ak ∈ Sk for some k ∈ J . If we write

E(k,Ak) =
∏
j∈J

Yj where Yj =

{
Aj if j = k
Sj otherwise

then the product texturing S =
⊗

j∈J Sj of S consists of arbitrary intersections of
elements of the set

ε = {
⋃
j∈J1

E(j, Aj) | J1 ⊆ J, Aj ∈ Sj for j ∈ J1}.

Consider two textures (S,S) and (V,V). The p-sets and q-sets of the product
texture (S × V,P(S)⊗ V) will be denoted by P (s,v), Q(s,v) respectively.

If P(X) is the power set of a set X, then (X,P(X)) is the discrete texture on
X. For x ∈ X, Px = {x} and Qx = X \ {x}. The mapping πX : P(X) → P(X),
πX(Y ) = X \ Y for Y ⊆ X is a complementation on the texture (X,P(X)).

Definition 2.1 ([16]). Let (S,S) and (V,V) be textures. Then

(i) r ∈ P(S)⊗ V is called a relation on (S,S) to (V,V), if it satisfies
R1 r * Q(s, v), Ps′ * Qs ⇒ r * Q(s′, v),

R2 r * Q(s, v)⇒ ∃s′ ∈ S such that Ps * Qs′ and r * Q(s′, v),
(ii) R ∈ P(S)⊗ V is called a co− relation on (S,S) to (V,V), if it satisfies

CR1 P (s, v) * R, Ps * Qs′ ⇒ P (s′, v) * R,

CR2 P (s, v) * R⇒ ∃s′ ∈ S such that Ps′ * Qs and P (s′, v) * R,
(iii) A pair (r,R), where r is a relation and R a co-relation on (S,S) to (V,V) is

called a direlation on (S,S) to (V,V).

For a texture (S,S) the identity direlation (i(S,S), I(S,S)) is defined by

i(S,S) =
∨
{P (s, s) | s ∈ S} and I(S,S) =

⋂
{Q(s, s) | s ∈ S[}.

For A ⊆ S, r→A =
⋂
{Qv | ∀s, r * Q(s,v) ⇒ A ⊆ Qs} is called the A-section of r

and R→A =
∨
{Pv | ∀s, P (s,v) * R⇒ Ps ⊆ A} is called the A-section of R.

For B ⊆ V , r←B =
∨
{Ps | ∀v, r * Q(s,v) ⇒ Pv ⊆ B} is called the B-presection

of r and R←B =
⋂
{Qs | ∀v, P (s,v) * R⇒ B ⊆ Qv} is called the B-presection of R.

2
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Proposition 2.2 ([16]). If (r,R) is a direlation on (S,S) to (V,V), then r→(
∨

i∈I Ai) =∨
i∈I r

→Ai, R
→(
⋂

i∈I Ai) =
⋂

i∈I R
→Ai, r

←(
⋂

j∈J Bj) =
⋂

j∈J r
←Bj and R

←(
∨

j∈J Bj) =∨
j∈J R

←Bj for any Ai ∈ S, Bj ∈ V, i ∈ I, j ∈ J .

Definition 2.3 ([16]). A direlation (f, F ) from (S,S) to (V,V) is called a difunction
from (S,S) to (V,V), if it satisfies the following two conditions:

(DF1) For s, s′ ∈ S, Ps * Qs′ ⇒ ∃v ∈ V with f * Q(s,v) and P (s′,v) * F .

(DF2) For v, v′ ∈ V and s ∈ S, f * Q(s,v) and P (s,v′) * F ⇒ Pv′ * Qv.

(f, F ) is called surjective, if ∀v, v′ ∈ V Pv * Qv′ ⇒ ∃s ∈ S with f * Q(s,v′) and P (s,v) *
F.

In particular, the identity direlation (iS , IS) is a difunction on (S,S).

Proposition 2.4 ([16]). (1) f←B = F←B for each B ∈ V.
(2) f←∅ = F←∅ = ∅ and f←V = F←V = S.
(3) f←(F→A) ⊆ A ⊆ F←(f→A) and f→(F←B) ⊆ B ⊆ F→(f←B) for all

A ∈ S, B ∈ V.
(4) If (f, F ) is surjective, then F→(f←B) = B = f→(F←B) for all B ∈ V.

A ditopology on a texture (S,S) is a pair (τ, κ), where τ, κ ⊆ S and the set of
open sets τ satisfies

(T1) S,∅ ∈ τ ,
(T2) G1, G2 ∈ τ ⇒ G1 ∩G2 ∈ τ ,
(T3) Gi ∈ τ, i ∈ I ⇒

∨
iGi ∈ τ

and the set of closed sets κ satisfies

(CT1) S,∅ ∈ κ,
(CT2) K1,K2 ∈ κ⇒ K1 ∪K2 ∈ κ,
(CT3) Ki ∈ κ, i ∈ I ⇒

⋂
iKi ∈ κ.

In this case, (S,S, τ, κ) is called a ditopological texture space (or ”d.t.s.” for short).
So a ditopology can be considered as a ”topology” in which there is no need to exist
a relation between the open and closed sets [6].

Let (S,S, τ, κ) be a d.t.s. For a subset A ∈ S, the closure (interior) of A is defined
by [A] =

⋂
{B ∈ κ | A ⊆ B} (]A[=

∨
{B ∈ τ | B ⊆ A}) respectively [17]. A ∈ S is

called semi open (semi closed), if A ⊆ [ ]A[ ] (] [A] [⊆ A) respectively [18]. A ∈ S is
called β-open (β-closed), if A ⊆ [ ] [A] [ ] (] [ ]A[ ] [⊆ A) respectively [12].

Definition 2.5 ([19]). Let (S,S, τ, κ) be a d.t.s. and A ∈ S.

(i) A is called compact, if whenever {Gi | i ∈ I} is an open cover of A (i.e.
∀i ∈ I Gi ∈ τ and A ⊆

∨
i∈I Gi) then there is a finite subset J of I with

A ⊆
∨

i∈J Gi. In particular, (S,S, τ, κ) is called compact, if S is compact.
(ii) A is called cocompact, if whenever {Ki | i ∈ I} is a closed cocover of A (i.e.
∀i ∈ I Ki ∈ κ and

⋂
i∈I Ki ⊆ A) then there is a finite subset J of I with⋂

i∈J Ki ⊆ A. In particular, (S,S, τ, κ) is called cocompact, if ∅ is compact.
(iii) (S,S, τ, κ) is called stable, if every K ∈ κ with K 6= S is compact.
(iv) (S,S, τ, κ) is called costable, if every G ∈ κ with G 6= ∅ is cocompact.
(v) (S,S, τ, κ) is called dicompact, if it is compact, cocompact, stable and

costable.
3
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A ∈ S is called β-compact (β-cocompact). if every cover (cocover) of A by β-open (
β-closed) sets has a finite subcover (subcocover) respectively and (S,S, τ, κ) is called
β-compact (β-cocompact), if S is β-compact (if ∅ is β-cocompact) respectively [12].

Let (Sk,Sk, τk, κk), k = 1, 2 be d.t.s. and (f, F ) : (S1,S1) → (S2,S2) be a di-
function. (f, F ) is called β-continuous (Mβ-continuous), if F←(G) is β-open in
(S1,S1, τ1, κ1) for every open (β-open) set G in (S2,S2, τ2, κ2). (f, F ) is called
β-cocontinuous (Mβ-cocontinuous), if f←(K) is β-closed in (S1,S1, τ1, κ1) for ev-
ery closed (β-closed) set K in (S2,S2, τ2, κ2). (f, F ) is called β-bicontinuous (Mβ-
bicontinuous), if it is both β-continuous and β-cocontinuous (both Mβ-continuous
and Mβ-cocontinuous) respectively [12].

Graded Ditopological Texture Spaces [5] Consider two textures (S,S) and
(V,V). A graded ditopological texture space (or ”g.d.t.s.” for short) is a tuple
(S,S, T ,K, V,V) where the mappings T ,K : S → V satisfy following conditions:

(GT1) T (S) = T (∅) = V ,
(GT2) T (A1) ∩ T (A2) ⊆ T (A1 ∩A2) ∀A1, A2 ∈ S,
(GT3)

⋂
j∈J T (Aj) ⊆ T (

∨
j∈J Aj) ∀Aj ∈ S, j ∈ J ,

(GCT1) K(S) = K(∅) = V ,
(GCT2) K(A1) ∩ K(A2) ⊆ K(A1 ∪A2) ∀A1, A2 ∈ S,
(GCT3)

⋂
j∈J K(Aj) ⊆ K(

⋂
j∈J Aj) ∀Aj ∈ S, j ∈ J.

In this case, T is called a (V,V)-graded topology and K a (V,V)-graded cotopology on
(S,S). For v ∈ V it is defined that

T v = {A ∈ S | Pv ⊆ T (A)}, Kv = {A ∈ S | Pv ⊆ K(A)}.

So (T v,Kv) is a ditopology on (S,S) for each v ∈ V . Namely, if (S,S, T ,K, V,V) is
a g.d.t.s., then there exists a d.t.s. (S,S, T v,Kv) for each v ∈ V .

[A]v and ]A[v stand for the closure and the interior of a set A ∈ S in the d.t.s.
(S,S, T v,Kv) respectively, so we have [A]v =

⋂
{B ∈ S | A ⊆ B, B ∈ Kv}, ]A[v=∨

{B ∈ S | B ⊆ A, B ∈ T v}.
Let (S,S, σ) be a complemented texture. If (S,S, T ,K, V,V) is a g.d.t.s. then

(S,S,K◦σ, T ◦σ, V,V) is also a g.d.t.s. Additionally, (T ,K) is called complemented,
if (T ,K) = (K ◦ σ, T ◦ σ) and in this case, we say that (S,S, T ,K, σ, V,V) is a
complemented g.d.t.s.

Let (Sk,Sk, Tk,Kk, Vk,Vk), k = 1, 2 be g.d.t.s., (f, F ) : (S1,S1) → (S2,S2),
(h,H) : (V1,V1) → (V2,V2) difunctions. For the pair ((f, F ), (h,H)), (f, F ) is
called continuous with respect to (h,H), if H←T2(A) ⊆ T1(F←A) ∀A ∈ S2, and
cocontinuous with respect to (h,H), if h←K2(A) ⊆ K1(f←A) ∀A ∈ S2. If (f, F ) is
continuous and cocontinuous with respect to (h,H), then it is said to be a bicontin-
uous difunction with respect to (h,H).

Example 2.6 ([5]). Consider the discrete texture (V,V) = (1,P(1)) (The notation
1 denotes the set {0}) and take a d.t.s. (S,S, τ, κ). Then the mappings τg, κg :
S → P(1) defined by τg(A) = 1 ⇔ A ∈ τ and κg(A) = 1 ⇔ A ∈ κ form a
g.d.t.s. (S,S, τg, κg, V,V). In this case, (τg, κg) is called a graded ditopology on
(S,S) corresponding to ditopology (τ, κ). Thus g.d.t.s. are more general than d.t.s.

4
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Definition 2.7 ([13]). Let (S,S, T ,K, V,V) be a g.d.t.s. and A ∈ S. The families
defined by

C(A) = {Pv ∈ V | [U ⊆ T v, A ⊆
∨
U ]⇒ ∃U0 ⊆ U : A ⊆

∨
U0}

C∗(A) = {Pv ∈ V | [U ⊆ Kv,
∧
U ⊆ A]⇒ ∃U0 ⊆ U :

∧
U0 ⊆ A}

where U0 denotes a finite subfamily of U , are called compactness and co−compactness
spectrums of A ∈ S respectively. In particular, the compactness spectrum and the
co-compactness spectrum of (S,S, T ,K, V,V) are C(S) and C∗(∅) respectively.

Definition 2.8 ([20]). Let (S,S, T ,K, V,V) be a graded ditopological texture space
and the mappings pT , pK, sT , sK : S → V be defined by

pT (A) =
∨
{Pv | A ⊆][A]v[v}, pK(A) =

∨
{Pv | [ ]A[v]v ⊆ A}(2.1)

sT (A) =
∨
{Pv | A ⊆ [ ]A[v]v}, sK(A) =

∨
{Pv | ][A]v[v⊆ A}(2.2)

for all A ∈ S. Then pT (pK) is called pre-openness (pre-closedness) function; sT
(sK) is called semi − openness (semi − closedness) function of (S,S, T ,K, V,V)
and pT (A) (pK(A)) is called pre-openness (pre-closedness) grade; sT (A) (sK(A)) is
called semi− openness (semi− closedness) grade of A respectively.

3. Main Results

Definition 3.1. Let (S,S, T ,K, V,V) be a graded ditopological texture space and
the mappings βT , βK : S → V be defined by

βT (A) =
∨
{Pv | A ⊆ [ ][A]v[v]v}, βK(A) =

∨
{Pv | ][ ]A[v]v[v⊆ A}(3.1)

for all A ∈ S. Then βT (βK) is called β-openness (β-closedness) function of
(S,S, T ,K, V,V) and βT (A) (βK(A)) is called β-openness (β-closedness) grade of
A respectively.

Proposition 3.2. For a graded ditopological texture space (S,S, T ,K, V,V) follow-
ing statements are hold:

(1) (a) T ⊆ pT ⊆ βT and K ⊆ pK ⊆ βK,
(b) T ⊆ sT ⊆ βT and K ⊆ sK ⊆ βK,

(2) The functions βT and βK satisfy the property (GT3) and (GCT3) respectively
where the texture (V,V) is discrete.

Proof. (1) (a) For any A ∈ S and v ∈ V , we have

Pv ⊆ T (A)⇒]A[v= A⇒ A =]A[v⊆][A]v[v⇒ Pv ⊆ pT (A)

and

A ⊆][A]v[v⇒ A ⊆][A]v[v⊆ [ ][A]v[v]v.

Then this implies

pT (A) =
∨
{Pv | A ⊆][A]v[v} ⊆

∨
{Pv | A ⊆ [ ][A]v[v]v} = βT (A).

5
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Thus we get T ⊆ pT ⊆ βT . Similarly, it can be shown that K ⊆ pK ⊆ βK.
(b) For any A ∈ S and v ∈ V , we have

Pv ⊆ K(A)⇒ [A]v = A⇒][A]v[v=]A[v⊆ A⇒ Pv ⊆ sK(A)

and

][A]v[v⊆ A⇒][ ]A[v]v[v⊆][A]v[v⊆ A.

Then this implies

sK(A) =
∨
{Pv | ][A]v[v⊆ A} ⊆

∨
{Pv | ][ ]A[v]v[v⊆ A} = βK(A).

Thus we get K ⊆ sK ⊆ βK. Similarly, it can be shown that T ⊆ sT ⊆ βT .
(2) Let Aj ∈ S, j ∈ J where J is an index set.

(a) Assume that
⋂

j∈J βT (Aj) * βT (
∨

j∈J Aj). Then
⋂

j∈J βT (Aj) * Qv and

Pv * βT (
∨

j∈J Aj) for an element v ∈ V. Thus we get Pv ⊆
⋂

j∈J βT (Aj) by⋂
j∈J βT (Aj) * Qv. So considering (V,V) is discrete, we have

∀j ∈ J Pv = {v} ⊆ βT (Aj)⇒ ∀j ∈ J Aj ⊆ [ ][Aj ]
v[v]v ⊆ [ ] [

∨
j∈J

Aj ]
v [v ]v

⇒
∨
j∈J

Aj ⊆ [ ] [
∨
j∈J

Aj ]
v [v ]v ⇒ Pv ⊆ βT (

∨
j∈J

Aj)

and this contradicts with Pv * βT (
∨

j∈J Aj). Hence
⋂

j∈J βT (Aj) ⊆ βT (
∨

j∈J Aj).

(b) Assume that
⋂

j∈J βK(Aj) * βK(
⋂

j∈J Aj). Then
⋂

j∈J βK(Aj) * Qv and

Pv * βK(
⋂

j∈J Aj) for an element v ∈ V. Thus we get Pv ⊆
⋂

j∈J βK(Aj) by⋂
j∈J βK(Aj) * Qv. So considering (V,V) is discrete, we have

∀j ∈ J Pv = {v} ⊆ βK(Aj)⇒ ∀j ∈ J ][ ]
⋂
j∈J

Aj [
v]v[v⊆][ ]Aj [

v]v[v⊆ Aj

⇒][ ]
⋂
j∈J

Aj [
v]v[v⊆

⋂
j∈J

Aj ⇒ Pv ⊆ βK(
⋂
j∈J

Aj)

and this contradicts with Pv * βK(
⋂

j∈J Aj). Hence
⋂

j∈J βK(Aj) ⊆ βK(
⋂

j∈J Aj).
�

Example 3.3. Let (S,S, τ, κ) be a ditopological texture space. Then a set D ∈ S is
β−open (not β−open) in (S,S, τ, κ) if and only if β-openness grade ofD, βτg(D) = 1
(βτg(D) = 0) in the graded ditopological texture space (S,S, τg, κg, 1,P(1)) respec-
tively. Similarly, a set D ∈ S is β − closed (not β − closed) in (S,S, τ, κ) if and
only if β-closedness grade of D, βκg(D) = 1 (βκg(D) = 0) in (S,S, τg, κg, 1,P(1))
respectively.

Proposition 3.4. If (S,S, T ,K, σ, V,V) is a complemented g.d.t.s., then βK ◦ σ =
βT and βT ◦ σ = βK.

6
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Proof. Since (S,S, T ,K, σ, V,V) is complemented, we get σ([A]v) =]σ(A)[v and
σ(]A[v) = [σ(A)]v for all A ∈ S and v ∈ V by [20]. Then we have

(βK ◦ σ)(A) = βK(σ(A)) =
∨
{Pv | ] [ ]σ(A)[v ]v [v⊆ σ(A)}

=
∨
{Pv | A ⊆ σ(] [ ]σ(A)[v ]v [v)} =

∨
{Pv | A ⊆ [σ([ ]σ(A)[v ]v)]v}

=
∨
{Pv | A ⊆ [ ]σ(]σ(A)[v)[v ]v} =

∨
{Pv | A ⊆ [ ][σ(σ(A))]v [v ]v}

=
∨
{Pv | A ⊆ [ ][A]v [v ]v} = βT (A)

and

(βT ◦ σ)(A) = βT (σ(A)) =
∨
{Pv | σ(A) ⊆ [ ] [σ(A)]v [v ]v}

=
∨
{Pv | σ([ ] [σ(A)]v [v ]v) ⊆ A} =

∨
{Pv | ]σ(] [σ(A)]v [v)[v⊆ A}

=
∨
{Pv | ] [σ([σ(A)]v)]v [v⊆ A} =

∨
{Pv | ] [ ]σ(σ(A))[v ]v [v⊆ A}

=
∨
{Pv | ] [ ]A[v ]v [v⊆ A} = βK(A)

for all A ∈ S. �

Definition 3.5. Let (Sk,Sk, Tk,Kk, Vk,Vk), k = 1, 2 be g.d.t.s. and (f, F ) : (S1,S1)→
(S2,S2), (h,H) : (V1,V1)→ (V2,V2) be difunctions. (f, F ) is said to be:

(i) β-continuous w.r.t. (h,H), if H←T2(A) ⊆ βT1(F←A) for all A ∈ S2,
(ii) Mβ-continuous w.r.t. (h,H), if H←βT2(A) ⊆ βT1(F←A) for all A ∈ S2,
(iii) β-cocontinuous w.r.t. (h,H), if h←K2(A) ⊆ βK1(f←A) for all A ∈ S2,
(iv) Mβ-cocontinuous w.r.t. (h,H), if h←βK2(A) ⊆ βK1(f←A) for all A ∈ S2,
(v) β-bicontinuous w.r.t. (h,H), if it is both β-continuous and β-cocontinuous

w.r.t. (h,H),
(vi) Mβ-bicontinuous w.r.t. (h,H), if it is bothMβ-continuous andMβ-cocontinuous

w.r.t. (h,H).

We say that ((f, F ), (h,H)) is a relatively (M)β-bicontinuous difunction pair, if
(f, F ) is (M)β-bicontinuous w.r.t. (h,H).

Example 3.6. Let (Sk,Sk, τk, κk), k = 1, 2 be d.t.s. and (f, F ) : (S1,S1)→ (S2,S2)
be a difunction. Consider graded ditopological texture spaces (Sk,Sk, τgk , κ

g
k, V,V),

k = 1, 2 corresponding to ditopological texture spaces (Sk,Sk, τk, κk), k = 1, 2.
(1) If (f, F ) is Mβ-continuous, then we have I←V βτg2 (A) = βτg2 (A) ⊆ βτg1 (F←A)

for each A ∈ S2 and so (f, F ) is Mβ-continuous w.r.t. the identity difunction
(iV , IV ). If (f, F ) isMβ-cocontinuous, then we have i←V βκ

g
2(A) = βκg2(A) ⊆ βκg1(f←A)

for each A ∈ S2 and so (f, F ) is Mβ-cocontinuous w.r.t. the identity difunction
(iV , IV ).

(2) If (f, F ) is β-continuous, then we have I←V τg2 (A) = τg2 (A) ⊆ βτg1 (F←A) for
each A ∈ S2 and so (f, F ) is β-continuous w.r.t. the identity difunction (iV , IV ).
If (f, F ) is β-cocontinuous, then we have i←V κ

g
2(A) = κg2(A) ⊆ βκg1(f←A) for each

A ∈ S2 and so (f, F ) is β-cocontinuous w.r.t. the identity difunction (iV , IV ).
In this sense, every β-bicontinuous (Mβ-bicontinuous) difunction between two

d.t.s. is considered as β-bicontinuous (Mβ-bicontinuous) difunction w.r.t. identity
difunction on the discrete texture on a singleton.
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(3) Clearly, each relatively bicontinuous difunction pair is relatively β-bicontinuous
by Proposition 3.2 (1).

Definition 3.7. Let (S,S, T ,K, V,V) be a g.d.t.s. and A ∈ S. Then we say that
the families

βC(A) = {Pv | [U ⊆ βT v, A ⊆
∨
U ]⇒ ∃U0 ⊆ U : A ⊆

∨
U0}

βC∗(A) = {Pv | [U ⊆ βKv,
∧
U ⊆ A]⇒ ∃U0 ⊆ U :

∧
U0 ⊆ A}

where U0 denotes a finite subfamily of U , are β-compactness and β-cocompactness
spectrums of A ∈ S respectively. We also say that βC(S) and βC∗(∅) are β-
compactness spectrum and β-cocompactness spectrum of the g.d.t.s. (S,S, T ,K, V,V)
respectively.

Corollary 3.8. Let (S,S, T ,K, V,V) be a g.d.t.s. and A ∈ S. Then βC(A) ⊆ C(A)
and βC∗(A) ⊆ C∗(A).

Proof. It is clear by Proposition 3.2. �

Proposition 3.9. If (S,S, T ,K, σ, V,V) is a complemented g.d.t.s. and A ∈ S then
βC(A) = βC∗(σ(A)). Namely, β-compactness and β-cocompactness spectrums of a
complemented g.d.t.s. are equal.

Proof. Let Pv ∈ βC∗(σ(A)), U ⊆ βT v and A ⊆
∨
U . Since (S,S, T ,K, σ, V,V) is

complemented, we have Pv ⊆ βT (U) = (βK ◦ σ)(U) = βK(σ(U)) for all U ∈ U by
Proposition 3.4. This implies σ(U) = {σ(U) | U ∈ U} ⊆ βKv. On the other hand,
we have also A ⊆

∨
U ⇒ σ(

∨
U) ⊆ σ(A)⇒

∧
σ(U) ⊆ σ(A). Then we get

∧
σ(U0) ⊆

σ(A) for a finite subfamily U0 ⊆ U by Pv ∈ βC∗(σ(A)). Also
∧
σ(U0) ⊆ σ(A)

implies σ(σ(A)) ⊆ σ(
∧
σ(U0)) and thus A ⊆

∨
U0. So we obtain that Pv ∈ βC(A),

i.e. βC∗(σ(A)) ⊆ βC(A). The other inclusion βC(A) ⊆ βC∗(σ(A)) can be shown
similarly.

Since σ(S) = ∅, we get βC(S) = βC∗(σ(S)) = βC∗(∅). Then β-compactness and
β-cocompactness spectrums of (S,S, T ,K, σ, V,V) are equal. �

Theorem 3.10. Let (Sk,Sk, Tk,Kk, Vk,Vk), k = 1, 2 be g.d.t.s. and (f, F ) : (S1,S1)→
(S2,S2), (h,H) : (V1,V1)→ (V2,V2) be difunctions.

(1) If (f, F ) is Mβ-continuous w.r.t. (h,H) and A ∈ S1, then

Pv ∈ βC1(A)⇒ Pt ∈ βC2(f→A),

(2) If (f, F ) is Mβ-cocontinuous w.r.t. (h,H) and A ∈ S1, then

Pv ∈ βC∗1 (A)⇒ Pt ∈ βC∗2 (F→A)

where Pv ∈ V1, Pt ∈ V2 with Pv ⊆ h←Pt.

Proof. We omit the proof of (1) and prove (2) since the proofs of (1) and (2) are
similar. Let Pv ∈ βC∗1 (A), Pv ∈ V1, Pt ∈ V2 and Pv ⊆ h←Pt. Considering the
definition of βC∗2 (F→A), if we suppose that (U ⊆ βKt

2,
∧
U ⊆ F→A) then we have∧

U∈U
f←U =

∧
f←U = f←(

∧
U) ⊆ f←(F→A) ⊆ A

8
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by Proposition 2.2 and Proposition 2.4 (3). Besides, since U ⊆ βKt
2 ⇒ (∀U ∈ U Pt ⊆

βK2(U))⇒ Pt ⊆ βK2(U) and (f, F ) is Mβ-cocontinuous w.r.t. (h,H) we get

Pv ⊆ h←Pt ⊆ h←(βK2(U)) ⊆ βK1(f←U).

Since Pv ∈ βC∗1 (A), we have
∧

U∈U0 f
←U ⊆ A for a finite subfamily U0 ⊆ U . Then

we get

F→A ⊇ F→(
∧

U∈U0

f←U) =
∧

U∈U0

F→(f←U) ⊇
∧

U∈U0

U =
∧
U0

by Proposition 2.2 and Proposition 2.4 (3). Thus we obtain that Pt ∈ βC∗2 (F→A).
�

Corollary 3.11. In addition to the conditions in the above theorem, if (f, F ) is
surjective, then the following results hold:

(1) if (f, F ) is Mβ-continuous w.r.t. (h,H), then

Pv ∈ βC1(S1)⇒ Pt ∈ βC2(S2),

(2) if (f, F ) is Mβ-cocontinuous w.r.t. (h,H), then

Pv ∈ βC∗1 (∅)⇒ Pt ∈ βC∗2 (∅)

where Pv ∈ V1, Pt ∈ V2 with Pv ⊆ h←Pt.

Proof. We get f←∅ = F←∅ = ∅ and f←S2 = F←S2 = S1 by using Proposition
2.4 (2). Besides, surjectivity of (f, F ) implies F→(f←S2) = S2 = f→(F←S2) and
F→(f←∅) = ∅ = f→(F←∅) by using Proposition 2.4 (4). Then we have f→S1 = S2

and F→∅ = ∅. Thus the result is obtained by Theorem 3.10. �

Definition 3.12. Let (S,S, T ,K, V,V) be a g.d.t.s. Then the families

βΩ = {Pv | [A ∈ S, A 6= S]⇒ [Pv ⊆ βK(A)⇒ Pv ∈ βC(A)]}

βΩ∗ = {Pv | [A ∈ S, A 6= ∅]⇒ [Pv ⊆ βT (A)⇒ Pv ∈ βC∗(A)]}
are called β-stableness spectrum and β-costableness spectrum of the g.d.t.s. (S,S, T ,K, V,V)
respectively.

Proposition 3.13. If (S,S, T ,K, σ, V,V) is a complemented g.d.t.s. then the β-
stableness spectrum and the β-costableness spectrum are equal, i.e., βΩ = βΩ∗.

Proof. Let Pv ∈ βΩ, A ∈ S, A 6= ∅ and Pv ⊆ βT (A). Since (S,S, T ,K, σ, V,V) is
complemented, we have Pv ⊆ βT (A) = (βK ◦ σ)(A) = βK(σ(A)). Moreover, A ∈ S,
A 6= ∅ implies σ(A) ∈ S, σ(A) 6= S. Then using Pv ∈ βΩ and Proposition 3.9, we
get Pv ∈ βC(σ(A)) = βC∗(A). Thus we obtain that βΩ ⊆ βΩ∗. Similarly, it can be
shown that βΩ∗ ⊆ βΩ. �

Theorem 3.14. Let (Sk,Sk, Tk,Kk, Vk,Vk), k = 1, 2 be g.d.t.s. and (f, F ) : (S1,S1)→
(S2,S2), (h,H) : (V1,V1)→ (V2,V2) be difunctions. If (f, F ) is surjective and Mβ-
bicontinuous w.r.t. (h,H), then

(1) Pv ∈ βΩ1 ⇒ Pt ∈ βΩ2,
(2) Pv ∈ βΩ∗1 ⇒ Pt ∈ βΩ∗2

where Pv ∈ V1, Pt ∈ V2 with Pv ⊆ h←Pt.
9
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Proof. (1) Let Pv ∈ βΩ1. Let Pt ⊆ βK2(B) is given where B ∈ S2, B 6= S2. Then we
get Pv ⊆ h←Pt ⊆ h←(βK2(B)) ⊆ βK1(f←B) by using that Pv ⊆ h←Pt and (f, F )
is Mβ-bicontinuous w.r.t. (h,H). Thus we have Pv ⊆ βK1(f←B). On the other
hand, since (f, F ) is surjective and B 6= S2, we get f←B 6= S1. So we obtain that
Pv ∈ βC1(f←B) by using Pv ∈ βΩ1. Hence we have Pt ∈ βC2(f→(f←B)) = βC2(B)
by Theorem 3.10 and Proposition 2.4 (1) and (4). Therefore we get Pt ∈ βΩ2.

(2) Let Pv ∈ βΩ∗1. Let Pt ⊆ βT2(B) is given where B ∈ S2, B 6= ∅. Then we get
Pv ⊆ h←Pt ⊆ h←(βT2(B)) = H←(βT2(B)) ⊆ βT1(F←B) by using that Pv ⊆ h←Pt

and (f, F ) is Mβ-bicontinuous w.r.t. (h,H). Thus we have Pv ⊆ βT1(F←B). On the
other hand, since (f, F ) is surjective and B 6= ∅, we get F←B 6= ∅. So we obtain that
Pv ∈ βC∗1 (F←B) by using Pv ∈ βΩ∗1. Hence we have Pt ∈ βC∗2 (F→(F←B)) = βC∗2 (B)
by Theorem 3.10 and Proposition 2.4 (1) and (4). Therefore we get Pt ∈ βΩ∗2. �

Definition 3.15. Let (S,S, T ,K, V,V) be a g.d.t.s. Then the family defined by

βDC = βC(S) ∩ βC∗(∅) ∩ βΩ ∩ βΩ∗

is called β-dicompactness spectrum of the g.d.t.s. (S,S, T ,K, V,V).

Corollary 3.16. Let (Sk,Sk, Tk,Kk, Vk,Vk), k = 1, 2 be g.d.t.s. and (f, F ) :
(S1,S1) → (S2,S2), (h,H) : (V1,V1) → (V2,V2) be difunctions. If (f, F ) is sur-
jective and Mβ-bicontinuous w.r.t. (h,H), then

Pv ∈ βDC1 ⇒ Pt ∈ βDC2

where Pv ∈ V1, Pt ∈ V2 with Pv ⊆ h←Pt.

Proof. It is an immediate result of Corollary 3.11 and Theorem 3.14. �

Example 3.17. Let (S,S, τ, κ) be a d.t.s. If (S,S, τ, κ) is β-compact (β-cocompact,
β-dicompact), then for the g.d.t.s. (S,S, τg, κg, 1,P(1)), Pv ∈ βC(S) (Pv ∈ βC∗(∅),
Pv ∈ βDC) respectively for all v ∈ 1 = {0}, i.e. v = 0.

Following proposition shows β-compactness relationships between ditopological
texture spaces and graded ditopological texture spaces:

Proposition 3.18. Let (S,S, T ,K, V,V) be a g.d.t.s. Then the following hold for
each v ∈ V :

(1) Pv ∈ βC(S) ⇔ The d.t.s. (S,S, T v,Kv) is β-compact,
(2) Pv ∈ βC∗(∅) ⇔ The d.t.s. (S,S, T v,Kv) is β-cocompact,
(3) Pv ∈ βΩ ⇔ The d.t.s. (S,S, T v,Kv) is β-stable,
(4) Pv ∈ βΩ∗ ⇔ The d.t.s. (S,S, T v,Kv) is β-costable,
(5) Pv ∈ βDC ⇔ The d.t.s. (S,S, T v,Kv) is β-dicompact.

Proof. It is straightforward. �

Example 3.19. Take discrete textures (S,S = P(S)) and (V,V = P(V )) where
S 6= ∅ and V = {x, y, z, r}. If we define the mappings T ,K : S → V as

T (A) =

{
V, A = ∅ or A = S
Pz = {z}, otherwise

K(A) =

{
V, A = ∅ or A = S
Pr = {r}, otherwise

10
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for all A ∈ S, then we get a g.d.t.s. (S,S, T ,K, V,V). Thus we obtain T z = S =
P(S), T x = T y = T r = {S,∅}, Kr = S = P(S), Kx = Ky = Kz = {S,∅}.
So we have ]A[z= A and [A]r = A for all A ∈ S. Also A 6= S, A ∈ S implies
]A[x=]A[y=]A[r= ∅ and A 6= ∅, A ∈ S implies [A]x = [A]y = [A]z = S. Hence we get
βT x = βT y = βT z = S = P(S), βT r = {∅, S}, βKx = βKy = βKr = S = P(S),
βKz = {∅, S}. Therefore we obtain that

βC(S) = βC∗(∅) = βΩ = βΩ∗ = βDC = {{x}, {y}, {z}, {r}}

if S is finite.
If a subset A ∈ S is infinite, then A ⊆

∨
U =

∨
s∈A{s} where U = {Ps | s ∈ A}.

Yet there is no finite subfamily U0 of U such that A ⊆
∨
U0. Thus we get that

βC(S) = βΩ = {Pr} = {r} if S is infinite.
On the other hand, for a subsetA ∈ S, if S\A is infinite, then

∧
U =

∧
x∈(S\A)((S\

A) \ Px) = ∅ ⊆ A where U = {(S \ A) \ Px | x ∈ (S \ A)}. Yet there is no finite
subfamily U0 of U such that

∧
U0 ⊆ A. So we have βC∗(∅) = βΩ∗ = {Pz} = {z}

and βDC = ∅ if S is infinite.
Moreover, we get

pT (A) =

{
V, A = ∅ or A = S
{x, y, z}, otherwise

pK(A) =

{
V, A = ∅ or A = S
{x, y, r}, otherwise

sT (A) =

{
V, A = ∅ or A = S
Pz = {z}, otherwise

sK(A) =

{
V, A = ∅ or A = S
Pr = {r}, otherwise

βT (A) =

{
V, A = ∅ or A = S
{x, y, z}, otherwise

βK(A) =

{
V, A = ∅ or A = S
{x, y, r}, otherwise

for all A ∈ S. Hence we have T ⊆ pT = βT , K ⊆ pK = βK, T = sT ⊆ βT ,
K = sK ⊆ βK and this result is also an example for Proposition 3.2 (1).

4. Conclusion

This study focuses on generalizing the concepts of β-openness and β-compactness
in d.t.s. to the g.d.t.s. To enhance the theory of g.d.t.s., it is important to ex-
amine the properties of these new concepts. The interrelations of openness, semi-
openness, pre-openness and β-openness (closedness, semi-closedness, pre-closedness
and β-closedness) grade of an element of a texture are investigated in a g.d.t.s.:
T ⊆ pT ⊆ βT , K ⊆ pK ⊆ βK, T ⊆ sT ⊆ βT , K ⊆ sK ⊆ βK (Proposition 3.2). In
a complemented g.d.t.s. with complementation σ; βK ◦ σ = βT and βT ◦ σ = βK

11
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(Proposition 3.4). We also show that β-compactness and β-cocompactness spec-
trums of a complemented g.d.t.s. are equal in Proposition 3.9.

The relationships between the concepts of Mβ-continuity (β-continuity) in d.t.s.
and relatively Mβ-continuity (relatively β-continuity) in g.d.t.s. are studied re-
spectively. Besides, the properties of β-(di)compactness spectrum in g.d.t.s., the
relationship between β-(di)compactness in d.t.s. and β-(di)compactness spectrum
in g.d.t.s. are examined.

Thus, this work develops the theory of graded ditopology by these findings and
it allows a more comprehensive approach to the theory.
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[14] A. P. Šostak, On compactness and connectedness degrees of fuzzy topological spaces, General

Topology and its Relations to Modern Analysis and Algebra, Heldermann Verlag, Berlin (1988)

519–532.
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